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Abstract

    OpenMP is a well known application programming
interface  for  exploiting  structured  parallelism  in
computationally heavy applications on shared memory
systems.  However,  as  applications  become  more
complex,  the  need  for  exploiting  unstructured  and
dynamic parallelism increases. Prior to OpenMP 3.0
this  task-level  parallelism  was  expressed  using  the
section  model.  OpenMP  3.0  introduced  the  tasking
model  which  promised  a  more  natural  way  of
exploiting  and  expressing  irregular  algorithms.  This
paper  examines  the  performance,  scalability,  and
expressiveness  of  the  two  models  through  the
implementation  of  the  well-understood  divide-and-
conquer sorting algorithms Mergesort and Quicksort. 

1. Introduction

    Well designed task-parallel  programming models
offer  an  efficient  way  for   programmers  to  specify
parallel tasks naturally, in a manner that can scale with
problem size. This scheduling of tasks onto processors
can  either  be  performed  statically  at  compile  time,
dynamically  at  run-time,  or  some  blend  of  the  two.
Task  parallelism  is  well  suited  to  the  expression  of
nested  parallelism  in  recursive  divide-and-conquer
algorithms and of unstructured parallelism in irregular
computations.  OpenMP  is  one  such  framework  for
developing task-parallel algorithms. There are 2 main
models  for  implementing  task-parallel  programs  in
OpenMP:  statically,  through  the  use  of  the  sections
construct,  or  dynamically  using  the  more  recent
addition  to  the  OpenMP  specification  known  as
tasking. This paper will explore a comparison of both
models  on  two  well  known  recursive,  divide-and-
conquer sorting algorithms: Mergesort and Quicksort.
Execution  time,  scalability,  efficiency  as  well  as
programmer productivity will all be considered when
assessing  the  two programming  models  provided  by
OpenMP.

2. Background

    OpenMP is a set of compiler directives and callable
runtime library routines that extend C (as well as C++
and Fortran) to express shared-memory parallelism [1].
The standard view of parallelism in a shared-memory
program  is  fork/join  parallelism  [2].  When  the
program begins execution, only a single thread (master
thread)   is  active.  The  master  thread  executes  the
sequential  portions  of  the  program,  and  when
parallelism can be exploited,  the master thread forks
additional threads to share the work. At the end of a
parallel  region,  the  additional  created  threads  are
suspended  or  killed  and  the  program  flow  control
returns to the master thread.  This is known as a join.
In OpenMP, all threads have access to the same shared
global memory and each thread has access to its own,
private, local memory. Threads synchronize implicitly
by  reading  and  writing shared  variables.  No explicit
communication is needed between threads [6]. 

2.1 OpenMP sections pragma

Prior to OpenMP 3.0, work-sharing, beyond simple
loop level parallelism, was accomplished by using the
sections construct.  The  sections  pragma is  a  non-
iterative work-sharing construct that contains a set of
structured blocks that are to be distributed among and
executed by the threads in a team [3]. Each structured
block, declared using a sections pragma, is executed
once  by  one  of  the  threads  in  the  team  [3].  The
OpenMP  sections pragma  is used  in  conjunction
with the OpenMP  section pragma to indicate  static
regions  of  computation  that  can  be  simultaneously
executed on different threads of an OpenMP  parallel
region  [4].  Each  unit  of  independent  work  must  be
specified  in  a  section pragma,  immediately
following a sections construct. This static method of
specifying parallel sections at compile time limits the
level of parallelism to that of the number of sections
clauses  contained  within  a  sections region.  The
threads of a parallel region that are not assigned to a
section must wait at an implicit barrier at the end of a
sections  region  until  the  sections  threads  have
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completed  their  work  which  significantly  limits  the
scalability of such designs. In the following study of
Mergesort  and  Quicksort,  we  will  discuss  how  this
limitation can be remedied to some degree by enabling
and  utilizing  nested  parallelism  in  the  recursive
algorithms.

2.2 OpenMP Tasks pragma

   OpenMP 3.0 introduced a new feature called tasking.
Tasking allows for  the parallelization of  applications
where units of work are generated dynamically,  such
as  in  recursive  structures  or  while  loops,  without
having  to  rely  on  nested  parallelism  [3].  This
simplifies  the  logic  for  the  programmer  as  well  as
reduces  the  overhead  inherent  in  creating  multiple,
nested, parallel regions [5]. Rather than organizing all
tasks  into  their  own  groups  like  in  sections,  tasking
allows  for  more  unstructured  parallelism,  as  when  a
task pragma is encountered by a thread in a parallel
region,  it  is  placed  into  a  task  queue  and  can  be
executed  by  a  thread  as  soon   as  one  becomes
available. The scheduling of tasks, which each contain
the  code  to  execute,  the  task  data  environment,  and
internal control variables, to threads, is handled by the
OpenMP runtime  system [6].  The  initial  creation  of
tasks  is  often  handled  by  a  single  thread  as  will  be
shown in the discussion of the sorting implementations
to follow. Synchronization between tasks is achieved
using the taskwait pragma. This construct specifies
a wait on the completion of child tasks generated since
the  beginning  of  the  current  task  and  allows  for
synchronization between dependent tasks[7].

3. Mergesort and Quicksort 

    Mergesort and quicksort are well understood divide-
and-conquer sorting algorithms which are well suited
to  the  demonstration  of  task-level  parallelization
techniques  in  OpenMP,  using  both  sections  and
tasking.  This  paper  is  not  a  discussion  on  the  best
design for these sorting algorithms, but rather uses the
divide-and-conquer algorithms as a way of assessing

the  separate  task-level  parallelization  models  of
OpenMP.  Care  was  taken  to  modify  the  sorting
algorithms  minimally  between  models  to  fairly
demonstrate  and assess  the performance and  ease  of
implementation of the different OpenMP task-parallel
models.  However,  in  some  sense,  tasking  naturally
prefers to be unnested, whereas the sections model will
need to be nested in order to achieve any scalability, so
various  implementations  were  also  made  so  each
model could be expressed in a way most natural.

3.1 Mergesort

Conceptually, a merge sort works as follows: 

1. Divide the unsorted list into 2 halves.

2. Call mergesort recursively on each of the
halves and then merge each of the sorted
halves.

Fig 1.2 A recursive mergesort algorithm used to sort an array of 7 integer
values.[10]

A serial implementation in C looks like:

void mergesort_serial(int a[], int n, int temp[])
{
    mergesort_serial(a, n/2, temp);
    mergesort_serial(a + n/2, n - n/2, temp);
    merge(a, n, temp);
}

A parallel implementation in OpenMP using sections
looks like this. 

void mergesort_parallel
      (int a[], int n, int temp[], int thrds){
    if ( threads == 1) {
        mergesort_serial(a, n, temp);
    }
    else if (threads > 1) {

Fig 1.1 Fork-join Model



    #pragma omp parallel sections
        {
     #pragma omp section
      mergesort_parallel(a, n/2,temp,thrds/2);
     #pragma omp section
      mergesort_parallel(a + n/2, n - n/2,
                temp + n/2, thrds - thrds/2);
        }
    merge(a, size, temp);
    }
}

    Note the parallel clause preceding the sections
directive.  Since  this  function  is  called  recursively,  a
new  parallel  region  is  created  in  each  call.  This  is
known as nested parallelism and allows this algorithm
to scale to the number of hardware threads available on
the  machine.  The  OMP_NESTED  environment
variable must be set to enable nested parallelism. The
number  of  available  threads  must  be  kept  track  of
which is why the remaining thread count is halved on
each level of the call tree. Without this depth checking,
an error will likely be thrown due to the high number
of requested threads in the nested parallel region which
the machine cannot accommodate.

    Although the tasking variation can be implemented
without  nested  parallelism,  (as  tasks  can  simply  be
created and added to the task queue in each recursive
call, with the parallel region declared outside the initial
sort function call,) it was decided that the tasking and
section models should first be compared under similar
conditions to determine if the dynamic nature of task
scheduling has any benefit.

A parallel mergesort using OpenMP tasking looks like:

void mergesort_parallel(int a[], int n,          
 temp[], int thrds, int thresh) {

  if (threads == 1) {
    mergesort_serial(a, n, temp, thresh);
  }
  else if (threads > 1) {
    #pragma omp parallel
    {
      #pragma omp single nowait
      {
        #pragma omp task
        {
          mergesort_par(a, n / 2, temp, thrds/2, 

thresh);
        }
        #pragma omp task
        {
          mergesort_parallel_omp(a + size / 2, 

n - n / 2,
          temp + n/2, thrds – thrds / 

2,thresh);
        }
        #pragma omp taskwait
        {
          merge(a, n, temp);
        }
      }

    }
  }
}

   Note the  single clause which specifies  only one
thread be responsible for the creation of tasks, as well
as the taskwait before the merge function call. This
is  because  there  is  no  implicit  barrier  like  that  in  a
sections region.

3.2 Quicksort

    Quicksort behaves much like mergesort, but instead
of dividing the list in half with each call, quicksort is
built  around  a  partition  operation.  A  pivot  point  is
chosen and used as an arbitrary point at which to place
items.  (It  is  also  performed  in  place  although  space
complexity  will  not  be  considered  as  this  is  a
demonstration of tasking vs sections performance not a
paper on designing the best sorting algorithm). When
an item in the list is encountered that is less than the
the pivot it is placed on the left side of the pivot, larger
items on the right. Each partition on either side of the
pivot  now  contains  all  numbers  less  than  or  greater
than the pivot.  This process  repeats  recursively  until
the  list  is  sorted.  The  reason  quicksort  makes  for  a
good  candidate  in  the  comparison  of  tasking  vs
sections  is  due  to  the  dynamic  nature  of  the  pivot.
Unlike  mergesort,  which  always  has  a  balanced
partition size, partition sizes in quicksort will often be
quite varied. This imbalance is where tasking should
theoretically  have  an  advantage  due  to  the  queuing
nature of the task model. If a thread completes a small
list  partition,  it  can move on to the next  task in the
queue  instead  of  waiting  for  all  sibling  tasks  to
complete.  This  should  make  for  better  thread
utilization, and increased performance. 

 Again,  several  versions  of  quicksort  were
implemented;  serial,  parallel  sections  unnested  (only
utilizing  2  threads),  nested  parallel  sections,  nested
parallel  tasking,  unnested  parallel  tasking.  Unnested
parallel tasking is the more natural way of expressing
quicksort  in  OpenMP  as  no  dpeth  checking/thread
counting  is  needed.  Since  the  nested  sections  and
tasking versions of mergesort were already shown, and
the structure for nested quicksort would be much the
same, for the sake of brevity, only an unnested tasking
version of quicksort will be provided:

void quick_sort (int p, int r, int *data, int 
low_limit) {
  if (p < r) {
    int q = partition (p, r, data);
    #pragma omp task firstprivate(data, 
low_limit, r, q)



      quick_sort (p, q - 1, data, low_limit);
    #pragma omp task firstprivate(data, 
low_limit, r, q)
     quick_sort (q + 1, r, data, low_limit);
  }
}

void par_quick_sort (int n, int *data, int 
low_limit) {
  #pragma omp parallel
  {
    #pragma omp single nowait
      quick_sort (0, n, data, low_limit);
  }
}

   Note the two separate functions. The main function
will  call  par_quick_sort() which creates  a single
parallel  region  and  has  a  single  thread  call
quick_sort() which then generates the initial tasks.
These tasks then generate  child tasks  recursively until
the list is sorted. See how nested parallelism is not a
requirement to achieve  full thread utilization. A single
parallel  region  is  created  with  all  available  system
threads and tasks wil be assigned to the threads as they
are created. Since the sort is done in place, each task or
section needs its own copy of the data which is why
the firstprivate clause is used. 

4. Experimental Setup

    All experiments were run with the same array of 230

random  integers  on  an  AMD  Ryzen  7-1700  8-core
machine with 16 available hardware threads.

4.1 Implementation Discussion

  Mergesort  uses a partition size threshold of 32 for
switching  to  insertion  sort,  with  depth  checking  to
determine  when  to  switch  to  serial  mergesort.
Quicksort’s  threshold  was  used  only  to  determine
when  to  switch  to  serial  quicksort.  This  paper  is
interested only in the comparison of tasking vs sections
under similar algorithms, rather than a comparison of
the  2  sorting  algorithms  themselves.  Performance
results  presented  here  are  meant  as  a  preliminary
analysis of the performance of the 2 models under 2
different  divide-and-conquer  scenarios,  balanced  and
unbalanced  partitioning.  Future  work  will  add  more
variations to the implementations for deeper analysis.

Mergesort  was  run  with  four  different
implementations:

• Sections: no nesting of parallel regions   – only
utilizes 2 threads as described previously

• Sections: nested parallel regions   – with depth
checking to limit depth.

• Tasking: nested parallel regions   – with depth
check

• Tasking:  no  nesting   –  with  depth  check  to
limit task levels

Quicksort  was  run  with  three  different
implementations:

• Sections: no nesting of parallel regions   – only
utilizes 2 threads as described previously.

• Sections: nested parallel regions   – with depth
checking  to  limit  depth,  but  allow  for
utilization of all hardware threads.

• Tasking: no nesting   – no depth checking. This
is  the  most  natural  way  of  expressing
Quicksort via the OpenMP tasking model and
makes for the simplest programming logic out
of the three different implementations.

    It is important to remember that the depth checking
is  needed  for  the  ability  to  run  the  nested  sections
versions,  and  that  nesting  the parallel  regions  is  the
only  way  to  utilize  more  than  2  threads  if  using
sections  in  the  case  of  these  sorting  algorithms.
Tasking needs no such checking to operate correctly.

5. Results

  As  expected,  Fig2.1  and  2.2  clearly  show  the
scalability  limitation  of  unnested  sections  for  binary
divide  and  conquer  algorithms.  Beyond two threads,
the  two  static  sections  cannot  exploit  anymore
parallelism and performance gains level off.

5.1 Mergesort Results

    Mergesort showed little variation in the performance
between nested sections and tasking. This is likely due
to  the  fact  that  mergesort  is  a  naturally  balanced
algorithm, so the dynamic  nature  of  tasks  cannot  be
fully  profited  from.  Any  benefits  from  threads
completing early and being able to start new work is
offset by the higher overhead of the task queuing and
scheduling.



5.2 Quicksort Results

    Quicksort shows a much starker contrast between 
OpenMP’s two task-level parallelism models, with tasks 
out-performing nested-sections significantly. The 
varying partition sizes will lead to some threads 
completing their portion of the sort much quicker, 
which can be exploited by scheduling new tasks to the 
completed threads in the tasking model. Efficiency (fig 
2.3, 3.3) in all algorithms tapers off to a similar degree 
as the overhead of creating and managing more nested 
regions and thread scheduling becomes more costly.
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6. Conclusion

Based  on  these  results,  it  would  appear  that  the
addition  of  the  tasking  model  is  an  improvement  to
OpenMP,  both  in  terms  of  performance  and
programmer productivity. Problems can be expressed
more  elegantly  using  the  tasking  model,  without  the
need  to create complex  nested regions and  manually
maintain a count of recursion depth level. Beyond the
programming simplification,  performance can  clearly
be  gained  in  irregular  algorithms  that  exhibit  some
load  imbalance.  The queuing  nature  of  tasks  is  well
suited  to  maximizing  thread  utilization  under  these
conditions.   Tasks  also  have  the  added  benefit  of
perfect scaling (fig 3.4) as any number of threads can
be utilized. Sections with depth checking, in the case
of these binary recursion trees,  requires the number of
threads to be a power of 2 for speedup to occur. 

7. Future Work

  Although  this  work  was  a  good  preliminary
introduction  to  the  tasking model  of  OpenMP,  there
are  many  other  parameters  and  runtime  variables
which  can  be  explored  in  OpenMP.  The  sorting
algorithms themselves can also be developed further,
experimenting  with  different  thresholds  for  serial
cutoff  etc.  In  some  cases  trying  to  keep  a  similar
design  between  the  sections  and  tasking
implementations may have had an effect on the results,
as  these  models  naturally  want  to  be  expressed
differently  programmatically.  Experimenting  with
different array sizes may also be useful in determining
if  the  over  head  of  task  scheduling  has  a  negative
impact  on  performance  for  sorting  smaller  lists.
Profiling  tools  such  as  Intel  V-Tune[8]  and  Oracle
Developer  Studio[9]  can  also be used  for  a  detailed
view of thread utilization,  offering more insight into
the results shown in this paper.
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